EVOLUTION
: the big pictureEVOLUTIONARY HIERARCHYof Network NatureEvolutionary hierarchies are imbricated or embedded like "Russian dolls" Global Top-down
differentiation make emerge the next inner level in which the next
higher level of Local
energy.information transformation processors integrate Bottom-up
and evolve.
"Evolution is the computational co-evolution of global top-down differentiation and local bottom-up integration in the fractal hierarchy of nature." Peter Winiwarter "Reductionistic approaches to the dynamics of change ignores there are two, not just one, type of causal relationship betwen parts and wholes. In the Western world, and the tradition of the classical sciences that define its analyses, “upward causation” is standard fare. This process describes the dynamics of parts in interaction with each other creating forces that produce the substances which manifest at the level the whole. Reasoning along these lines leads to the supposition that by working on the parts we can affect healthy change in the whole. Of course, it is not always wrong to reason this way – in fact, it works perfectly well in the case of relatively simple and straightforward situations associated with particular individual problems and concerns. But in the case of complex and dynamic problems, such as are involved in evolutionary processes, it is too simplistic. Here the concept of “downward causation” suggested by Nobellaureate neurophysiologist Roger Sperry is called for. Downward causation describes the process by which the whole exercises what biologists refer to as determinant influence on the parts. As Sperry’s work demonstrates, this is the kind of influence that happens in the higher nervous system where the consciousness exhibited by the whole brain governs the behavior of the brain’s neuronal networks and subassemblies. General Evolution Theory (GET) In recent years, an action-oriented systems approach to the development of human and natural systems has emerged from the study of evolutionary processes in nature and society. It is known as General Evolutionary Systems Theory (or General Evolution Theory (GET), for short). It postulates that the evolutionary trend in the universe constitutes a ‘cosmic process’ specified by a fundamental universal flow toward ever increasing complexity. It is now understood that this dynamic of complexification manifests itself through particular events and sequences of events that are not limited to the domain of biological phenomenon but extend to include all aspects of change in open dynamic systems with a throughput of information and energy. In other words, evolution relates to the formation of stars from atoms, of Homo sapiens from the anthropoid apes, as much as to the formation of complex societies from rudimentary social systems. GROWTH ≠ DEVELOPMENT ≠ EVOLUTION At this point, it becomes important to distinguish between growth, development, and evolution. Evolution, as we have seen, involves a process of directional (but nondirected) change that leads from states closer to thermodynamic and chemical equilibrium (the so called “first state”) to those further removed from it (the “third state”). As such, it describes a tendency toward states further removed from thermodynamic and chemical equilibrium. More simply put, it is “a general way of conceptualizing the self-organizing selection process of the universe displayed in … increasing complexity” (Reeves, 1992, 1102). Development really relates more to the world of human affairs, and is part of our socially constructed reality in terms of what we consider to be “desirable” objectives for us or others (and hence allows us to make very subjective and relativistic statements about what and who is developed vs. those that are not). Growth is something that we can measure through definable units of size or scale, and relates to notions of physical size or numerical quantity. It provides a metric that can be applied to many processes of change, but not to those that are qualitative or conditional in nature. Growth = an increase in size or quantity Development = an amelioration of conditions or quality Evolution = a tendency toward greater structural complexity and organizational simplicity, more efficient modes of operation, and greater dynamic harmony Beyond Darwinism a series of random genetic mutations is not likely to have produced all the complex species indicated by observation and the fossil record within the time that was available for biological evolution on this planet. … In any case, if random mutation and natural selection require more time to produce viable species than the fossil record indicates, then Darwin’s theory, if not quite mistaken, is at least incomplete” (E. Laszlo, 2000). Biologist Lewis Thomas expresses his views on the subject as follows: One major question needing to be examined is the general attitude of nature. A century ago there was a consensus about this; nature was ‘red in tooth and claw,’ evolution was a record of open warfare among competing species, the fittest were the strongest aggressors, and so forth. Now it begins to look different. ... The urge to form partnerships, to link up in collaborative arrangements, is perhaps the oldest, strongest, and most fundamental force in nature. There are no solitary, free-living creatures, every form of life is dependent on other forms. (Thomas, 1980,1) Margulis explains this vital mutualism like this: All organisms are dependent on others for the completion of their life cycles. Never, even in spaces as small as a cubic meter, is a living community of organisms restricted to members of only a single species. Diversity, both morphological and metabolic, is the rule. Most organisms depend directly on others for nutrients and gases. Only photo- and chemo-autotrophic bacteria produce all their organic requirements from inorganic constituents; even they require food, gases such as oxygen, carbon dioxide, and ammonia, which although inorganic, are end products of the metabolism of other organisms. Heterotrophic organisms require organic compounds as food; except in rare cases of cannibalism, this food comprises organisms of other species or their remains. (Margulis, 1981, 163) In nature, community means that “every species ... directly or indirectly, supplies essential materials or services to one or more of its associates” (Dice, 1962, 290). Such a conception of community brings with it deeper insights, such as “... the notion of life as self-directed movement. Nature is not at war, one organism with another. Nature is an alliance founded on cooperation” (Augros & Stanciu, 1987, 129.). To give an idea of the coordination of activities involved, imagine an immensely huge superorchestra playing with instruments spanning an incredible spectrum of sizes from a piccolo of 10-9 meter up to a bassoon or bass viol of a meter or more, and a musical range of 72 octaves. The amazing thing about this superorchestra is that it never ceases to play out our individual songlines, with a certain recurring rhythm and beat, but in endless variations that never repeat exactly. Always, there is something new, something made up as it goes along. It can change key, change tempo, change tune perfectly, as it feels like it, or as the situation demands, spontaneously and without hesitation. Furthermore, each and every player, however small, can enjoy maximum freedom of expression, improvising from moment to moment, while remaining in step and in tune with the whole. (Ho, 1998, 55) Through such an appreciation we can come to recognize how “even the study of a whole organism can be reductionistic if it ignores habitat, niche, and relation to other living things. ... No organism makes sense in abstraction from its natural living condition” (Ho, 1998, 230). In the final analysis, together with all that with which we interact, we are evolution. Citations from and by Alexander Laszlo "The Nature of Evolution", World Futures, the journal for General Evolution (to be published) John Smart EvoDevoUniverse ? A Framework for Speculations on Cosmic Culture in Cosmos and Culture, Steven J. Dick (ed.), NASA Press (forthcoming). Abstract evodevouniverse The underlying paradigm for cosmology is theoretical physics. In this paper we explore ways this framework might be extended with insights from information and computation studies and evolutionary developmental (evo-devo) biology. We also briefly consider implications of such a framework for cosmic culture. In organic systems, adaptive evolutionary development guides the production of intelligent, ordered and complex structures. In such systems we can distinguish evolutionary processes which are chaotic, creative, and contingently adaptive, and developmental processes which produce convergent, conservative, and systemically statistically predictable structures and trajectories. By analogy with two genetically identical twins, would two parametrically identical universes each engage in unpredictably different and unique evolutionary pathways over their lifespan, and at the same time, share a broad set of predictable developmental milestones, structure and function between them? We suggest so. We will briefly model our universe as an informational, evolutionary and developmental system−as an info evo devo universe (abbreviated ‘evo devo universe’ hereafter). Our framework will try to reconcile the majority of apparently unpredictable, evolutionary features of universal emergence with a special subset of statistically predictable and apparently developmental universal trends, including: • accelerating emergences (significant advances), in universal complexity, a pattern seen over the last half—but not the first half—of the universe’s history • increasing spatial and temporal locality of universal complexity development • apparently hierarchical emergence of increasingly matter- and energy-dense, and matter- and energy-efficient ‘substrates’ (platforms) for adaptation and computation • the apparent accelerating trend, on Earth, toward increasingly postbiological (technological) systems of physical transformation and computation. http://plato.stanford.edu/entries/connectionism/ Who produces Worldviews? The Growth of Structural and Functional Complexity during EvolutionCenter "Leo Apostel", Free University of Brussels, Pleinlaan 2, B-1050 Brussels, Belgium E-mail: fheyligh@vnet3.vub.ac.be ABSTRACT. Although the growth of complexity during evolution seems obvious to most observers, it has recently been questioned whether such increase objectively exists. The present paper tries to clarify the issue by analysing the concept of complexity as a combination of variety and dependency. It is argued that variation and selection automatically produce differentiation (variety) and integration (dependency), for living as well as non-living systems. Structural complexification is produced by spatial differentiation and the selection of fit linkages between components. Functional complexification follows from the need to increase the variety of actions in order to cope with more diverse environmental perturbations, and the need to integrate actions into higher-order complexes in order to minimize the difficulty of decision-making. Both processes produce a hierarchy of nested supersystems or metasystems, and tend to be self-reinforcing. Though simplicity is a selective factor, it does not tend to arrest or reverse overall complexification. Increase in the absolute components of fitness, which is associated with complexification, defines a preferred direction for evolution, although the process remains wholly unpredictable. Evolution and the Law of Accelerating Returns
Mihalyi Csikszentmihalyi (1993)to put it quite plainly: “In order to make choices that will lead to a better future, it helps to beaware of the forces at work in evolution." Table of Evolutionary Hierarchies |
||||||||||||||||||||||||||||||||||||||||||||||||||||
phase of evolution | Microscopic energy / information processor type | emerging
energy / information field bonds linking the network |
time scale
since big bang |
scientific discipline, link to empirical data | comments | |||||||||||||||||||||||||||||||||||||||||||||||
0 | metaphysics | man | consciousness | ? | metaphysics | Short before the big bang? | ||||||||||||||||||||||||||||||||||||||||||||||
1 | Planck-era of big bang | graviton | super-grand-unified field | ??? |
astrophysics theory | |||||||||||||||||||||||||||||||||||||||||||||||
2 | proto-universe GUT era | quark | GUT, gravitation | 10-43 sec | astrophysics theory | |||||||||||||||||||||||||||||||||||||||||||||||
3 | electroweak era | elementary particles | strong force |
|
|
strong forces become distinct, perhaps causing inflation of the universe | ||||||||||||||||||||||||||||||||||||||||||||||
4 | particle era | antiproton, antineutrino antimatter | electromagnetic and weak force |
|
|
electromagnetic and weak forces become distinct | ||||||||||||||||||||||||||||||||||||||||||||||
5 | era of nucleosynthesis | protons, neutrons, electrons neutrinos | electromagnetic and weak force |
|
|
matter annihilates antimatter | ||||||||||||||||||||||||||||||||||||||||||||||
6 | era of nuclei | Hydrogen, Helium, electrons | strong nuclear | 180 sec |
|
Fusion ceases; normal matter is 75% hydrogen | ||||||||||||||||||||||||||||||||||||||||||||||
7 | era of atoms | H, He, C | carbon hypercycle | 300.000 years | astrophysics | Atoms form, photons fly free and become background radiation | ||||||||||||||||||||||||||||||||||||||||||||||
8 | era of stars | H, He, C O, ... U | nuclear binding energy in atom (nuclide) | 1 billion years | astrophysics | first galaxies form | ||||||||||||||||||||||||||||||||||||||||||||||
today | 13.73 billion years | astronomy | humans observe the cosmos | |||||||||||||||||||||||||||||||||||||||||||||||||
bordalier institute home |
time scale from today | |||||||||||||||||||||||||||||||||||||||||||||||||||
big bang | - 13.73×109
years billion |
age of the universe | ||||||||||||||||||||||||||||||||||||||||||||||||||
9 | era of planets and moons | physico-chemical elements | trajectory bonds of planetary network | -4.54×109
years billions |
astrophysics | |||||||||||||||||||||||||||||||||||||||||||||||
10 | earthcrust | land-water agglomerates | geophysical bonds network | -3.8x109
years billions |
geophysics | islands | ||||||||||||||||||||||||||||||||||||||||||||||
11 | gaia | macro-molecules hypercycles ATP |
chemical bonds, trophic bonds in network (foodweb) | -3.5x109
years` billions |
physics, phys-chem geology, geoscience, meteorology | mountains, lakes, rivers, floods | ||||||||||||||||||||||||||||||||||||||||||||||
12 | biosphere | proto-cells, selfreplicating unicellular metabolism (prokaryote) RNA | genetic network | -3.3x109
years billions |
bio-chemistry | hypercycle, cell | ||||||||||||||||||||||||||||||||||||||||||||||
13 | biotope | cell (eucariote) DNA | energy transportation network, genetic network | -2.5x109
years billions |
bio-chemistry, biology | genetic tradition, first photosynthesis by blue-green algae | ||||||||||||||||||||||||||||||||||||||||||||||
14 | ecosystem | multicellular organism | central nervous system network | -2.0x109
years billions |
biology, plant, animal, ecosystems | oxygen from photosynthesis | ||||||||||||||||||||||||||||||||||||||||||||||
15 | social community | communication symbols, rituals | social communication network |
|
social systems; ethology, | first nucleated cells with
organelles/ bacteria colonized single cells (symbiosis) ants, termites, bees, humans |
||||||||||||||||||||||||||||||||||||||||||||||
16 | Land plant animals | vertebrates | trophic web network |
|
plant, animal, | -200 to -100 million years Age of Dinosaurs | ||||||||||||||||||||||||||||||||||||||||||||||
17 | culture, relegion | homo economicus verbalis : words | formal symbolic (verbal) communication network, | -2x106
years millions |
economics linguistics, religion |
oral traditiion, homo economicus | ||||||||||||||||||||||||||||||||||||||||||||||
18 | engineering & design | homo mecanicus: tools, buildings, machines | oral tradition and tools, mechanical systems network | -10.000 years | mechanical systems | it's in the cities that new forms of social interaction and mechanical systems emerge, (water, road) | ||||||||||||||||||||||||||||||||||||||||||||||
19 | history | homo letteris: icons, ideograms, letters | written communication network | -5.000 years | paleontology, history, communication systems |
written tradition, communication networks, energy transportation networks (water, roads ... railroads, electricity, airports) | ||||||||||||||||||||||||||||||||||||||||||||||
20 | science | homo scientificus: formulas, laws |
formal written symbolic community / network | -500 years | history of science, | formal written tradition; humans observe the cosmos | ||||||||||||||||||||||||||||||||||||||||||||||
21 | computers | homo cyberneticus: systems theories, systems laws |
binary systems network | -50 years |
cybernetics, science of science | transdisciplinary tradition | ||||||||||||||||||||||||||||||||||||||||||||||
22 | world-wide-web | homo networked: URL universal resource locator on computer networks |
man computer internet
network, artificial neural networks, scientometrics |
-18 years |
computer
tech, neural
networks scientometrics metaphilosophy |
putting it all together on the web, this site | ||||||||||||||||||||||||||||||||||||||||||||||
23 | Semantic WEB | computer communicans | WEB services network | -2 years future | Amazon(Amazon Web Servicies), Google Semantic_Web |
computers communicating directly with computers | ||||||||||||||||||||||||||||||||||||||||||||||
Complex multicellular forms of life are surprisingly recent on our planet. They have existed only for about 600,000,000 years or slightly more. When these creatures began to appear, 87% of the earth's existence had already gone by, and 83% of the total time life has existed had already passed as well. The evolution of life has not been a smooth process of ever increasing numbers of species. There have been major setbacks caused by global catastrophic events, such as ice ages, immense volcanic eruptions, asteroid impacts, and major fluctuations in the amount of oxygen in the atmosphere. The result has been at least six episodes of mass extinction and many minor ones.
present internet structure or embryogenesis remember Haeckel's theory of recapitulation; "ontogenesis (development) repeats phylogenesis (evolution)". The theory of recapitulation, also called the biogenetic law or embryological parallelism, and often expressed as ontogeny recapitulates phylogeny, was first put forward in 1866 by German zoologist Ernst Haeckel. Haekel proposed that the embryonal development of an individual organism (its ontogeny) followed the same path as the evolutionary history of its species (its phylogeny). The theory has been discredited. Note by the author: It's not the adult form of evolution which is recapulated in development, it's the abstract structure of the building plan. Such the development of internet is predictable in terms of abstract structure. A nucleus of a semantic Internet 2 within Internet 1, "RNA" and selfreplication of Web Services, "DNA" code of semantic Internet Services, "sexual replication" of Webs, "self-conscious" Webs etc. The future is full of evolutionary surprises. |